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 Problem Definition
 Applications
 Methods
 Performance Evaluation



Problem Definition
3

 Selectivity estimation of similarity search for high-
dimensional data
 Given: 

 a database X of high-dimensional vectors, 
 a query vector q, 
 a distance function dist(., .), 
 a threshold t.

 Estimate the number of objects x in X such that dist(q, x) ≤ t. 
 a.k.a. cardinality estimation, spherical range counting. 

 Related problem
 Selectivity (cardinality) estimation for relational data [KKRL+19, 

OBGK19, SL19, WSRY19, YLKW+19, HTAK+20, PZM20]

 Each predicate deals with a dimension.
 SELECT COUNT(*) FROM employee WHERE age < 30 AND 
salary > 50000

 Dimensionality is usually low.



Application – Local Density Estimation
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 Clustering
 Find starting points.

slow 
convergence

fast 
convergence



Application – Range Query Processing
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 Convert range queries to kNN queries. 
 Some high-dimensional search algorithms are designed only for kNN queries (e.g., 

HNSW). 
 Estimate the number of results, and then apply a kNN algorithm. 

k ≈ 5

kNN
search

range query 
results



Application – Local Density Estimation
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 Determine the popularities of topics.

Kamala Harris wasn't picked
for geographic reasons. But
in the perpetual power
struggle between the East
and West, her ascent carried
all the signs of a rebalancing
…

…

extract 
topics

estimate 
density

convert to 
word 

embedding



Application – Local Density Estimation
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 Find out if a user/item is an outlier in an e-commerce application.

…
convert to 
user/item 

embedding
estimate 
densityuser

item …



Application – Image Retrieval
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database 
image

query 
image

to HD 
vector

1100010
1101101

1101011
1101001

index

look up for 
candidates

postprocessing

…

output

source: Wikipedia



Application – Image Retrieval
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database 
image

query 
image

to HD 
vector

1100010
1101101

1101011
1101001

index

look up for 
candidates

…

output

Estimate candidate size  running 
time, service level agreement …

source: Wikipedia

postprocessing



Application – Query Optimization
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 Hands-off entity matching systems (e.g., Falcon [DCDN+17]) extract paths 
from random forests and take each path (a conjunction of similarity 
predicates) as a blocking rule. 

edit_distance(name) < 3

No

Jaccard(paper_title) > 0.8

Yes

cosine(bio) > 0.7

No Yes

not match match

No Yes

not match match

blocking rule 1
cosine(embedded_name) > 0.7

AND
cosine(embedded_bio) > 0.8

blocking rule 2
cosine(embedded_name) > 0.7

AND
cosine(embedded_paper_title) > 0.9



Application – Query Optimization
11

 Hands-off entity matching systems (e.g., Falcon [DCDN+17]) extract paths 
from random forests and take each path (a conjunction of similarity 
predicates) as a blocking rule. 

 Embed textual attributes (e.g., by edit distance embedding [DYZW+20]) and 
process the conjunctive query.

edit_distance(name) < 3

No

Jaccard(paper_title) > 0.8

Yes

cosine(bio) > 0.7

No Yes

not match match

No Yes

not match match

blocking rule 1
cosine(embedded_name) > 0.7

AND
cosine(embedded_bio) > 0.8

blocking rule 2
cosine(embedded_name) > 0.7

AND
cosine(embedded_paper_title) > 0.9

Estimate result size 
decide which predicate 
shall be evaluated first.



Evaluation Criteria of Selectivity Estimation
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 Accuracy
 Measured by MSE, MAPE, q-error, etc.

 Estimation speed
 Offline processing speed

 Build an index?
 Train a model?

 Performance guarantee
 ε-δ

 Consistency (monotonicity)
 For a fixed query object, selectivity is non-decreasing in the threshold.
 This yields more interpretability and less vulnerability. 

 Updatability
 The database may have updates.



(Representative) Selectivity Estimation Methods
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 Sampling
 Uniform sampling
 Importance sampling

 Kernel density estimation
 Regression

 XGBoost
 Vanilla deep neural network
 Recursive model index
 Deep lattice network
 Threshold partitioning (CardNet)
 Quantized regression
 Query-dependent piecewise linear function (SelNet)
 Global-local model



Sampling – Uniform Sampling
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 A natural baseline
 It is lightweight with well-understood performance, and easy to support 

monotonicity and handle updates.
 Weakness: the probability that dist (q, x) ≤ t is small, especially when q is an 

outlier. So we need a very large sample size for accurate estimation. 

X S
Count x in S, 

such that 
dist (q, x) ≤ t

Multiply
by

|X|/|S|

uniform, e.g., 
by reservoir 

sampling



Sampling – Importance Sampling
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 Estimate selectivity by generating samples from another distribution.
 SimHash for angular distance (cosine similarity) [WCN18].

 dist(., .) is captured by Hamming distance between hash values.
 Use L independent hash tables for better accuracy. 

1100010

1101011

index

look up for x’ s.t. 
ham(q’, x’) ≤ t’

x in X

q

SimHash

SimHash

x’

q’

uniform 
sample

Count x
such that 

dist (q, x) ≤ t

P(A) = P(A, B) / P(B | A)
A = dist (q, x) ≤ t

B = ham(q’, x’) ≤ t’

deduced by 
SimHash

The estimator is monotonic if 
sampling is deterministic w.r.t. 
q and t’ is non-decreasing in t.



Sampling – Importance Sampling
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 Deal with updates.
 Update the index and sample.

1100010

1101011

index

look up for x’ s.t. 
ham(q’, x’) ≤ t’

x in X

q

SimHash

SimHash

x’

q’

uniform 
sample

Count x
such that 

dist (q, x) ≤ t

P(A) = P(A, B) / P(B | A)
A = dist (q, x) ≤ t

B = ham(q’, x’) ≤ t’

deduced by 
SimHash

The estimator is monotonic if 
sampling is deterministic w.r.t. 
q and t’ is non-decreasing in t.



Kernel Density Estimation (KDE)
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 Sample and smooth by kernel.

source: Wikipedia



Kernel Density Estimation (KDE)
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 Model the probability density function of dist(q, x) by KDE [MFBS18].
 Sample objects and compute their contributions to the selectivity.

X S

For each x in S:
u = dist(q, x)
h = B(x, q, t)

total += contrib(x)

Multiply
by

|X|/|S|

B(): a bandwidth function 
learned using query samples. 
The estimator is monotonic if 
B() is independent of t.

source: [MFBS18]

offline



Kernel Density Estimation (KDE)
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 Deal with updates.
 Incrementally sample more objects.
 Retrain bandwidth functions. 

X S

For each x in S:
u = dist(q, x)
h = B(x, q, t)

total += contrib(x)

Multiply
by

|X|/|S|

source: [MFBS18]

offline

B(): a bandwidth function 
learned using query samples. 
The estimator is monotonic if 
B() is independent of t.



Regression – XGBoost
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 Gradient boosting [CG16]

 Ensemble of weak prediction models.
 For example, decision trees, with each rule in the form of q[i] < α or t < β.

 Each model is learned to fit the residual of previous ones.

q[5] < 3.0
No Yes

… …

t < 1.2
No Yes

t < 2.6
No Yes

3512 4656 2931 3760

q[3] < 7.2
No Yes

… …

t < 0.9
No Yes

t < 2.4
No Yes

65 89 47 70

+ + …



Regression – XGBoost
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 Gradient boosting [CG16]

 Ensemble of weak prediction models.
 For example, decision trees, with each rule in the form of q[i] < α or t < β.

 Each model is learned to fit the residual of previous ones.

q[5] < 3.0
No Yes

… …

t < 1.2
No Yes

t < 2.6
No Yes

3512 4656 2931 3760

q[3] < 7.2
No Yes

… …

t < 0.9
No Yes

t < 2.4
No Yes

65 89 47 70

+ + …
The estimator is 
monotonic if t < β is only 
at the bottom level and 
leaf node values are non-
decreasing w.r.t. Yes/No.



Regression – XGBoost
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 Deal with updates.
 It is time-consuming to retrain existing decision trees. 
 Train more decision trees to fit the residual. 

q[5] < 3.0
No Yes

… …

t < 1.2
No Yes

t < 2.6
No Yes

3512 4656 2931 3760

q[3] < 7.2
No Yes

… …

t < 0.9
No Yes

t < 2.4
No Yes

65 89 47 70

+ + …



Regression – Vanilla Deep Neural Network
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 Fully connected neural network.
 Number of hidden layers ≈ 4.
 For higher accuracy, embed t (dim ≈ 5) and concatenate to q as input.
 Non-monotonic.

q

embedt



Regression – Recursive Model Index
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 Originally developed for range indexing in relational databases [KBCD+18].
 Inspired by the mixture-of-experts model. 
 Each model (e.g., a neural network) picks another one in the next stage.
 Non-monotonic.

NN

NN

NN

NN

NN

NN

NN

NN

NN

q

embedt

selectivity

⊕



Regression – Deep Lattice Network
25

 Developed for monotonic regressions [YDCP+17].
 Input: monotonic features + non-monotonic features. 

 Components
 Lattice: regression for a d-dimensional input.

 Calibrator: 1-dimensional non-decreasing piecewise linear function. 
 Linear embedding: a matrix (all elements ≥ 0 for monotonicity).

(amin, bmin, cmin) (amax, bmin, cmin)

(amin, bmax, cmin)
(amax, bmax, cmin)

(amin, bmax, cmax) (amax, bmax, cmax)

(amax, bmin, cmax)

Only learn for vertex values. 
Others are processed by 
multilinear interpolation.

lat(a, b, c) ≤ lat(a’, b, c) for 
monotonic feature a ≤ a’.



Regression – Deep Lattice Network
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calibrator
monotonic

linear embedding
(non-monotonic)

non-monotonic

linear embedding
(monotonic)

q

t

selectivity



Regression – Threshold Partitioning (CardNet)
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 Idea: partition the distance threshold, and then use multiple regressors, 
each dealing with a distance interval [WXQC+20]. 

 Procedure: feature extraction + regression
 Feature extraction

 query vector q binary vector r
 Map q to an integer B by LSH (e.g., random projection) and then set the B-th bit to 1
 Repeat L rounds using L hash functions and concatenate the resulting bit vectors.

 threshold t integer τ
 0  0. tmax τmax. Other values are mapped in a non-decreasing manner  monotonicity.

2.5 -1.8 3.7 -0.6 1.2 0 1 1 0

2.4 6



Regression – Threshold Partitioning (CardNet)
28

 Idea: partition the distance threshold, and then use multiple regressors, 
each dealing with a distance interval. 

 Procedure: feature extraction + regression 
 Regression

 Use (τ + 1) regressors, each for a distance in 0, 1, … τ.

FeatExt(q)

0

1

τ

… …

dense 
rep. & 
concat

embed

embed

embed

NN

NN

NN

…

decoder

decoder

decoder

… + =

selectivity0

selectivity1

selectivityτ

…
selectivity



Regression – Quantized Regression
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 Query space partitioning [AT15, AT17].
 Quantize the query space to discover prototypes of query patterns. 
 Train a local model (e.g., a linear model, which is monotonic) to deal with each 

prototype. 

M1

M2

M3

M4
M5

q
M5(q, t) selectivity



Regression – Query-Dependent Piecewise 
Linear Function (SelNet)

30

 Learn query patterns implicitly (in contrast to quantized regression) and 
utilize piecewise linear functions (PLFs) for regression [WXQM+20]. 

 Query-dependent PLFs v.s. query-independent PLFs. 

query-independent 
(deep lattice network):

fixed control points

q1

q2

query-dependent: 
variable (adaptive) 

control points

q1

q2

x (threshold)

y (selectivity)

x (threshold)

y (selectivity)



Regression – Query-Dependent Piecewise 
Linear Function (SelNet)

31

 Learn query-dependent PLFs.
 NN: a neural network that outputs the x values of control points.
 ED: an encoder-decoder model that outputs the y values of control points. 
 Monotonic if y is non-decreasing in x.

q

AE

NN

ED

x

y

linear 
interpolation

t

…

…

x

y

q1

q2

x (threshold)

y (selectivity)

selectivity⊕

⊕



Regression – Query-Dependent Piecewise 
Linear Function (SelNet)

32

 Dataset partitioning
 Density may vary across different regions in a large dataset. 
 Partition the dataset into n non-overlapping parts and train a local model for each 

part. 
 Sum up the selectivity estimated by each local model. 

SelNet1

SelNet2

SelNet3

SelNet4

+ = selectivity



Regression – Global-Local Model
33

 Another dataset partitioning approach [SGT21].
 Partition the dataset into non-overlapping parts and train a local model for each 

part.
 Train a global model to select local models that produce non-zero selectivities. 

Global Model

Local Model1

Local Model2

Local Model3

Local Model4

+ = selectivity



Regression – Global-Local Model
34

 Local model
 Input

 Query feature: q partitioned into m disjoint subvectors. 
 Threshold feature: a scalar t. 
 Dataset feature: a k-dimensional vector x such that each dimension is the similarity between q and a sample 

in the subset of dataset for this local model. 

 Procedure
 Embed query, threshold, and dataset feature vectors respectively. 
 Concatenate the embeddings and feed to a feedforward neural network for regression. 
 Enforce all the weights in the threshold embedding to be positive to guarantee monotonicity. 

q

t

x

DNN

DNN

CNN zq

zt

zx

DNN selectivitylocal
⊕



Regression – Dealing with Updates
35

 Many (deep) regression models are trained through gradient descent.  
 We adopt incremental learning for these models. 

error > 
threshold?

update the 
labels of 

validation data No

Yes

update the 
labels of 

training data

use the
current model

incrementally 
train the model

error 
unchanged for k

epochs?

Yes

use the
updated model

No



Benchmarks
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 So far there are no specific benchmarks for this problem.
 Datasets used in existing work (benchmarks for other uses)

 Text
 GloVe: 1.9M 300-dimensional word embedding

 https://nlp.stanford.edu/projects/glove/

 fastText: 1M 300-dimensional word embedding
 https://fasttext.cc/docs/en/english-vectors.html

 Image
 MS-Celeb-1M: 10M celebrity images for face recognition

 https://msceleb.org/ (terminated in 2019)
 Pre-processed by faceNet [SKP15] to 128-dimensional vectors.

 Video
 YouTube: 3.4K videos of 1.6K people

 http://www.cs.tau.ac.il/~wolf/ytfaces/index.html
 0.35M 1770-dimensional (-feature) vectors extracted from the frames.



Comparison of Selectivity Estimation Methods
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Method Accuracy Estimation
Speed

Offline Proc. 
Speed

Performance 
Guarantee

Consistency 
(Monotonicity)

Uniform Sampling Adjustable / 
Very Low Adjustable None Yes Possible

Importance Sampling Adjustable / Low Adjustable Fast Yes Possible

KDE Medium Slow Medium No Possible

XGBoost Low Medium Medium No Possible

Vanilla DNN Low Fast Medium No No

Recursive Model Index Medium Medium Slow No No

DLN Low Slow Slow No Yes

CardNet High Fast Slow No Yes

Quantized Regression Medium Slow Medium No Possible

SelNet High Medium Slow No Yes

Global-Local High Fast Slow No Possible
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Performance in a Query Optimizer
40

 Datasets
 AMiner (author names & publications)
 IMDB (cast & movie titles)
 Attributes are pre-processed by Sentence-BERT [RG19].

 Queries
 Conjunctive queries of 2 – 5 Euclidean distance predicates.

 For example, dist(name) ≤ 0.25 AND dist(affiliations) ≤ 0.4 AND dist(research interests) ≤ 0.45.
 For each query, we estimate the selectivity of each predicate. 
 The predicate with the smallest selectivity is evaluated first by index lookup. Others are checked on the fly.

 Methods
 Uniform sampling
 XGBoost
 RMI
 CardNet-A: CardNet with acceleration for estimation
 Exact: an oracle that instantly returns the true selectivity.
 Mean: an estimator that returns the same selectivity (mean of 10,000 random queries) for a given threshold.



Performance in a Query Optimizer
41

 Exact: oracle (true selectivity)
 Cardnet-A
 DL-RMI: RMI

 TL-XGB: XGBoost
 DB-US: uniform sampling
 Mean: same (mean selectivity)

Query processing time:
estimation / lookup+check

Precision of query planning:
% of queries on which a method picks the fastest plan
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