Outline

- Introduction
- Exact Query Processing
- Approximate Query Processing
- Selectivity Estimation
- Open Problems

Approximate Query Processing

- Space Partitioning-based
 - Tree
 - Encoding
 - Locality Sensitive Hashing
- Graph-based Methods

Notes:

- Focus on recent algorithmic development
- Prefer ease of exposition over rigor
- Categorization is not fixed/unique

Space Partitioning-based

- Partition the whole space into partitions that cover the whole space
- Further divided into 3 sub-categories:
 - Tree-based
 - Encoding-based
 - Locality sensitive hashing-based

Tree-based

- Hierarchically partition the whole space into partitions that covers the whole space
- A natural idea in low-dimensional space
 - disjoint: kd-tree

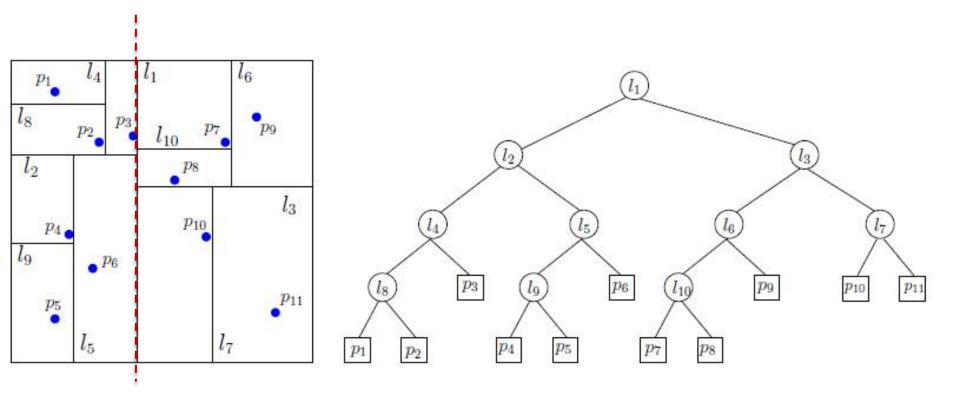
Randomized kd-trees and variants

overlapping: R-tree

M-tree, Cover Tree, Spill tree

Problem: Non-trivial modification needed to handle high-dimensional data

kd-tree Examples (low dimensional space)



5

Trees with Non-overlapping Partitions: Step 1

- Mapping
 - Random top-k dimensions: Randomized kd-tree
 - PCA: PCA-tree
 - Random Rotation: NKD-Tree
 - Optimized Sparse Rotation: TP-Tree
 - Random Projection: RP-Tree

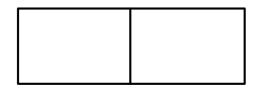
Main idea: maximize the variance before the split

Step 2

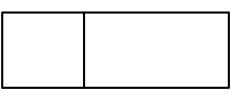
Split

- Dim 1
 - Median split: (randomized) KD-tree, PCA-tree, ...
 - Perturbed split: RP-tree
 - Overlapping split: Spill Tree [DS15]
 - Virtual spill tree: "Spill" at query time
- **Dim 2:**
 - Linear split
 - Non-linear split: [DIRW20]

median split

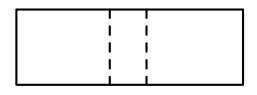


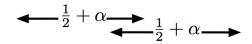
perturbed split



 $-\beta \rightarrow -1 - \beta -$

overlapping split



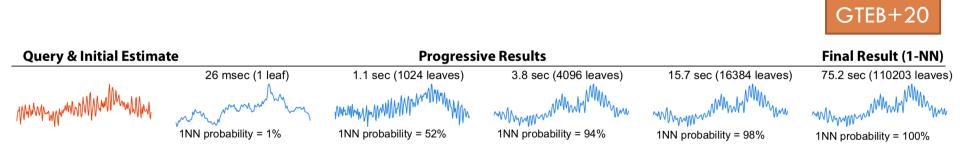


Steps 3 & 4

Optional) Tree → Forest

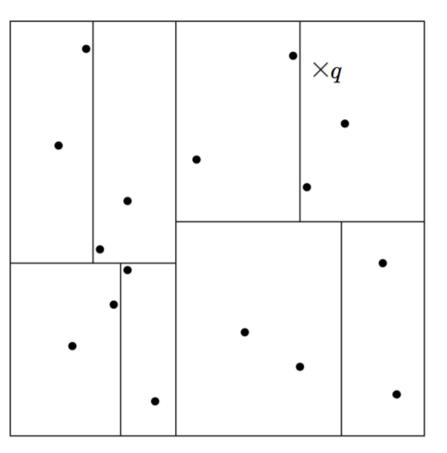
Can be applied to all kinds of trees

- Can use best-first search to coordinate the searches
- When to stop?
 - Guaranteed NN found
 - Bounded cost
 - Judged by a prediction model [LZAH20, GTEB+20]

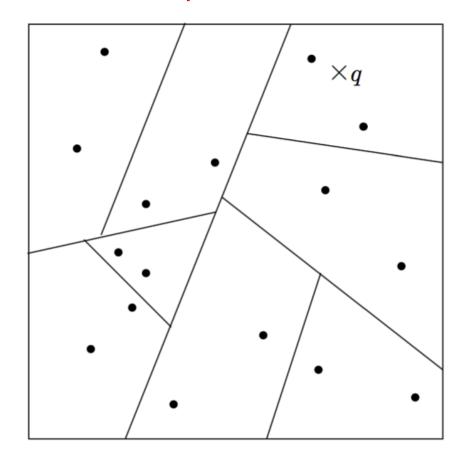


RP-tree Example

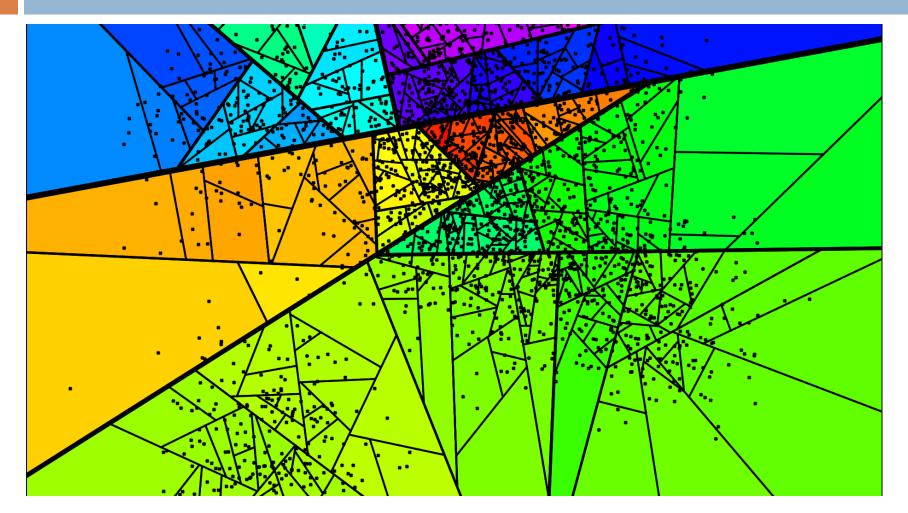
kd-tree



rp-tree



Annoy Example



Erik Bernhardsson, "Approximate nearest neighbor methods and vector models", 2015

Trees with Overlapping Partitions

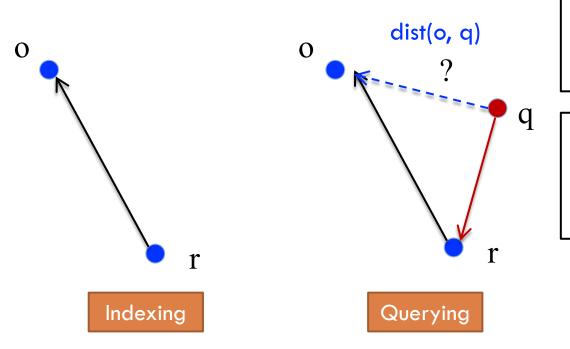
- Based on the metric property
 - (M)VP-tree, M-tree
- Based on intrinsic dimensionality
 - Cover Tree
- □ "Spill"
 - Spill for data: Spill Tree
 - Spill for query: Virtual Spill Tree

Able to index objects in a non-Euclidean space

Metric Property

12

- Inference on the lower & upper bound of dist(u, v)
 - Triangular inequality
 - Ptolemaic inequality



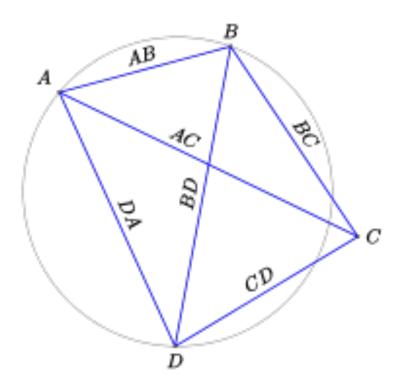
Triangular inequality:

 Lower and upper bounds of dist(o, q)

c.f., LSH (later)

 gives the full distribution of dist(o, q)

Ptolemaic inequality



$\overline{AB} \cdot \overline{CD} + \overline{BC} \cdot \overline{DA} \geq \overline{AC} \cdot \overline{BD}$

https://en.wikipedia.org/wiki/Ptolemy%27s_inequality

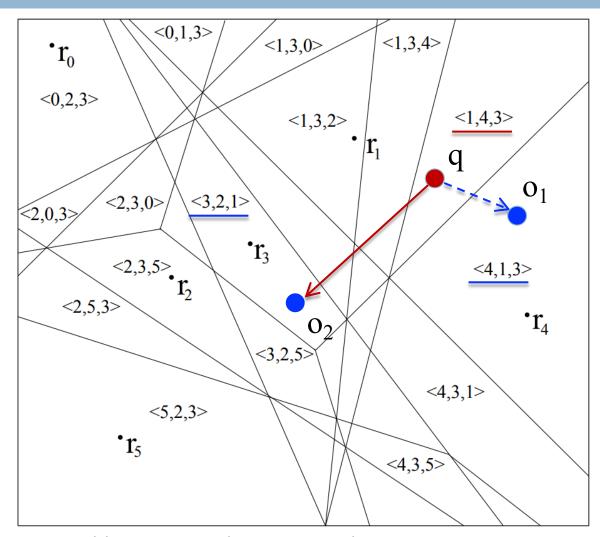
Variants

Reference points

- All DB objects: AESA
- Many work/heuristics to select a good subset
- [Diversion] Use rank() instead of dist() of reference points
 - Permutation index [NBN16, etc]
 - \Box dist(u, v) is small \rightarrow d(perm(u), perm(v)) is also small

PP-Index

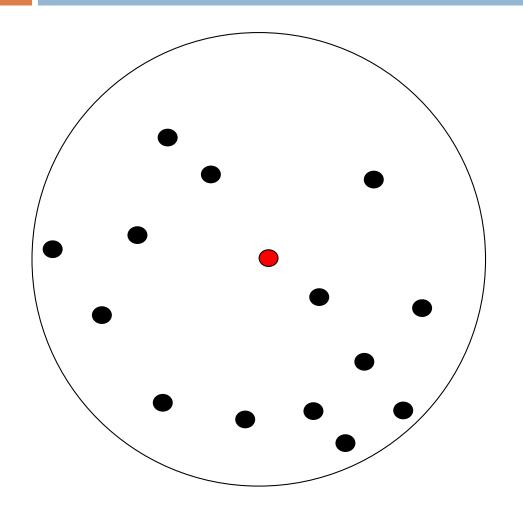
Order-3 Voronoi Diagram



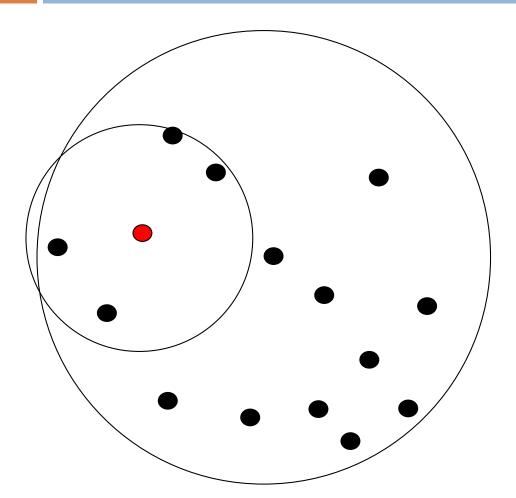
http://www.esuli.it/publications/PP-Index-slides.pdf

Intrinsic Dimensionality

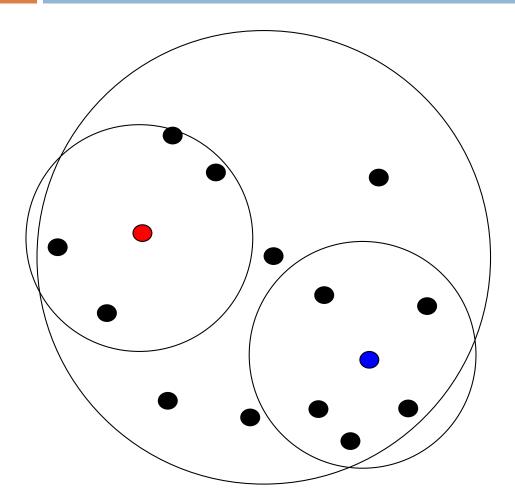
- One of the metrics is Expansion Constant
 - □ Smallest c such that $|Ball(z, 2R)| \le c^* |Ball(z, R)|, \forall z$
- Cover Tree
 - O(n) space
 - O(c⁶ * nlog(n)) construction and update time
 - O(c¹² * nlog(n)) exact NN query time
 - $\label{eq:constraint} \square c^{O(1)} \log \Delta + (1/\epsilon)^{O(\log c)} \quad \textit{\mathcal{E}-NN query}$
 - Δ (aspect ratio): ratio between largest and smallest interpoint distance



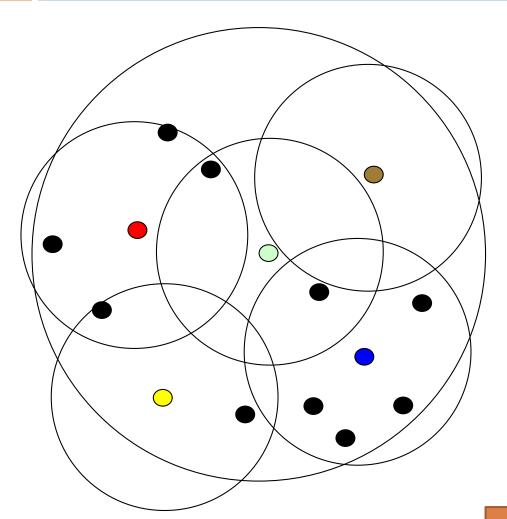
A node covered
 by a pivot data
 point (red) with
 radius R



Cover the points
 using a child pivot
 with radius R/2



 Repeat by picking the child pivot outside the previous covers



□ Nesting

- C⁽ⁱ⁾: C⁽ⁱ⁻¹⁾ U black nodes
- C⁽ⁱ⁻¹⁾: colored nodes
- Covering
 - **dist**($u^{(i)}$, $v^{(i-1)}$) $\leq 2^{i}$
- Separation
 - **dist(** $u^{(i-1)}$, $v^{(i-1)}$) $\geq 2^{i}$

fan-out of any node $\leq c^4$

Encoding-based

- Learning to hash
- Product Quantization
- Hierarchical k-means

Learning to Hash

🗆 Idea:

- Embed R^d to a k-dimensional Hamming cube while minimizing some objective function (neighborhood preservation or distance distortion)
 - $\mathbf{x}_{i} \in \mathbb{R}^{d} \rightarrow z_{i} \in \{0, 1\}^{k}$

E.g., Spectral hashing:

D Minimize $\sum_{ij} W_{ij} \|z_i - z_j\|$

 \rightarrow Partition the space into 2^k regions

Minimize avg Hamming distance between neighboring points

and other conditions (max utilization of bits + uncorrelatedness)

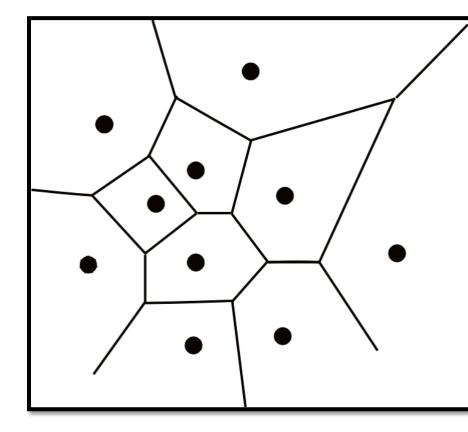
• Where
$$W_{ij} = \exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2 / \varepsilon^2)$$

Many other variants

c.f., https://learning2hash.github.io_and https://cs.nju.edu.cn/lwj/L2H.html

Coding based on k-means

- Partition the whole space into n regions by nmeans → Voronoi
- Can be relaxed using k
 < n</p>
 - However, still cannot afford a very large k (why?)



Solution 1: PQ (Product Quantization)

□ Index:

24

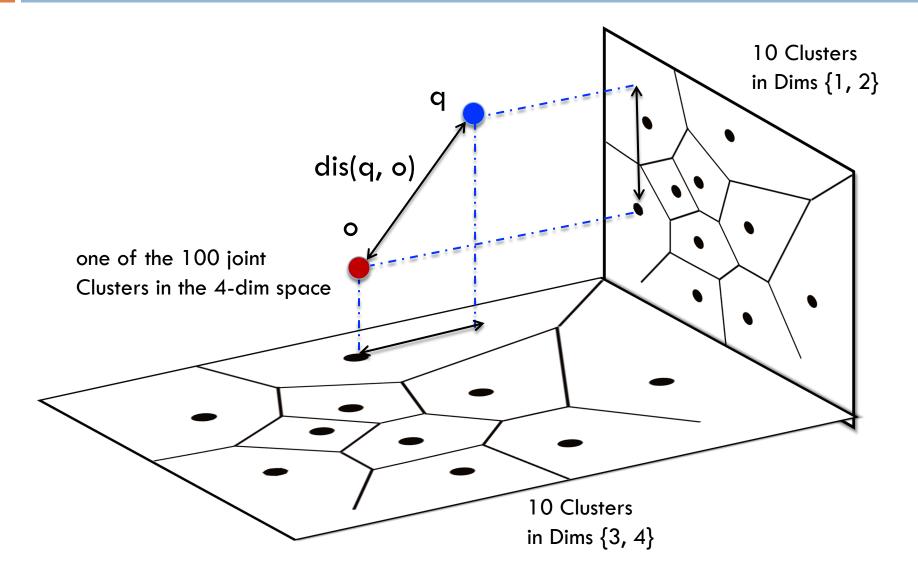
- Tiny space consumption: $\sim 1/32$ size of the data
- Partition the d dims into L partitions
- k-means clustering within each partition
- $\Box \{C_{1,i}\} X \{C_{2,i}\} X \dots \{C_{L,i}\} \text{ joint centers}$
- Each point encoded as the closest joint center
- Query Processing:
 - Repeat
 - Find the closest joint center
 - Compute the asymmetric distance (via table lookup)
 - Optimizations:
 - Multi-index-based (best with only 2 partitions)
 - PQ Fast Scan [AKS15], PQBF [LCC17], ...

Product

if $k = 2^8$

Quantization

Illustration of PQ



	VA-File	PQ
#Partitions on dimensions	d	L = d/log(k)
Codebook	typically linear, equi- width partitioning of the domain	non-linear, "equi- width" partitioning of the domain
Query Processing	Brute-force on the encoded data	Best-first search on the encoded data

Solution 2: Hierarchical k-Means Tree

- PQ can be deemed as an approximate version of (L*k)-means quantization
- Hierarchical k-Means Tree (as in FLANN) recursively partition the data using k-means clustering using a small k
 - Special case: hierarchical 2-means trees

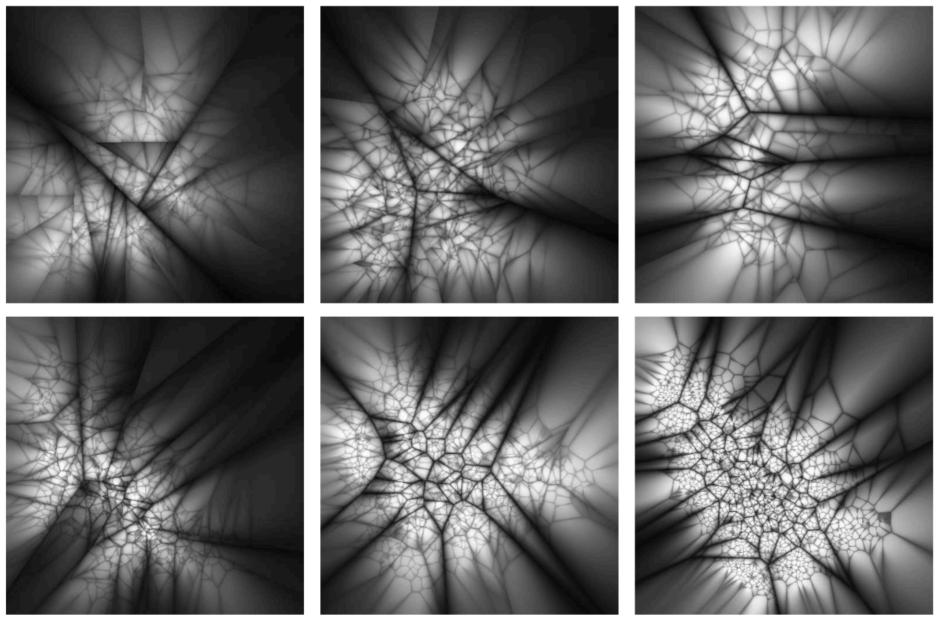


Figure 1: Projections of hierarchical k-means trees constructed using the same 100K SIFT features dataset with different branching factors: 2, 4, 8, 16, 32, 128. The projections are constructed using the same technique as in (Schindler et al., 2007). The gray values indicate the ratio between the distances to the nearest and the second-nearest cluster center at each tree level, so that the darkest values (ratio \approx 1) fall near the boundaries between k-means regions.