
Outline
1

¨ Introduction
¨ Exact Query Processing
¨ Approximate Query Processing
¨ Selectivity Estimation
¨ Open Problems



Approximate Query Processing
2

¨ Space Partitioning-based
¤ Tree
¤ Encoding
¤ Locality Sensitive Hashing

¨ Graph-based Methods 

Notes:
• Focus on recent algorithmic development
• Prefer ease of exposition over rigor 
• Categorization is not fixed/unique



Space Partitioning-based
3

¨ Partition the whole space into partitions that cover
the whole space 

¨ Further divided into 3 sub-categories:
¤ Tree-based
¤ Encoding-based
¤ Locality sensitive hashing-based



Tree-based
4

¨ Hierarchically partition the whole space into  
partitions that covers the whole space 

¨ A natural idea in low-dimensional space
¤ disjoint: kd-tree
¤ overlapping: R-tree

Randomized kd-trees and variants

M-tree, Cover Tree,  Spill tree

Problem: 
Non-trivial modification needed to handle high-dimensional data



kd-tree Examples (low dimensional 
space)

5



Trees with Non-overlapping 
Partitions: Step 1

6

¨ Mapping
¤ Random top-k dimensions: Randomized kd-tree
¤ PCA: PCA-tree
¤ Random Rotation: NKD-Tree
¤ Optimized Sparse Rotation: TP-Tree
¤ Random Projection: RP-Tree

Main idea: 
maximize the variance before the split



Step 2
7

¨ Split
¤ Dim 1

n Median split: (randomized) KD-tree, PCA-tree, …
n Perturbed split: RP-tree
n Overlapping split: Spill Tree [DS15]

n Virtual spill tree: “Spill” at query time

¤ Dim 2: 
n Linear split
n Non-linear split: [DIRW20]



Steps 3 & 4
8

¨ (Optional) Tree è Forest
¤ Can be applied to all kinds of trees
¤ Can use best-first search to coordinate the searches

¨ When to stop?
¤ Guaranteed NN found
¤ Bounded cost 
¤ Judged by a prediction model [LZAH20, GTEB+20]

GTEB+20



RP-tree Example
9

kd-tree rp-tree



Annoy Example
10

Erik Bernhardsson, “Approximate nearest 
neighbor methods and vector models”, 2015



Trees with Overlapping Partitions
11

¨ Based on the metric property
¤ (M)VP-tree, M-tree

¨ Based on intrinsic dimensionality
¤ Cover Tree

¨ “Spill”
¤ Spill for data: Spill Tree
¤ Spill for query: Virtual Spill Tree

Able to index objects in a 
non-Euclidean space



Metric Property
12

¨ Inference on the lower & upper bound of dist(u, v)
¤ Triangular inequality
¤ Ptolemaic inequality

o

r
Indexing

q

r

Querying

?
o

c.f., LSH (later)
• gives the full distribution 

of dist(o, q) 

Triangular inequality: 
• Lower and upper bounds 

of dist(o, q)
dist(o, q)



Ptolemaic inequality
13

https://en.wikipedia.org/wiki/Ptolemy%27s_inequality

AB · CD +BC ·DA � AC ·BD

<latexit sha1_base64="yR6JMvMlKNf8YJy7J/YKcV0JzoQ=">AAAC4HicfVFNb9NAEF0bWor5SuHIZUVUCUEU2VUl4NYmOXBBFIm0keooGq/Hzqq21+yuKyLLd26IKz8Mif/CgXES1IYgRlr5zds3T+O3UZlJY33/p+Peur2ze2fvrnfv/oOHjzr7j8+MqrTAsVCZ0pMIDGaywLGVNsNJqRHyKMPz6HLY3p9foTZSFR/tosRpDmkhEynAEjXrlKGi63a6PuGDhociVpZfk0M+al5etwM+3NaM+AmRKX7iN83+IRyQ2azT9fv+svg2CNagy9Z1Ott3JmGsRJVjYUUGxlwEfmmnNWgrRYaNF1YGSxCXkOIFwQJyNNN6GU3DD4iJeaI0ncLyJXtzoobc5GDnPfq2CtMCO897Ud7wTWubvJ7Wsigri4VYOSdVxq3ibbA8lhqFzRYEQGhJy3ExBw3CUvwbToYAUtuLMaFYrmhMaVoZwSxWDbkf8DYy0ByyFCMNnheOkP5f4zta932JGkj4og5Bp7ksGsojDXst+p8QPv8REvLoLYK/k98GZ4f94Kj/5sNR93iwfpU99pQ9Y89ZwF6xY/aWnbIxE+wH++XsOLtu5H5xv7rfVlLXWc88YRvlfv8NQOzosA==</latexit>



Variants
14

¨ Reference points
¤ All DB objects: AESA

n Organized into a hierarchical fashion è metric tree indexes

¤ Many work/heuristics to select a good subset

¨ [Diversion] Use rank() instead of dist() of reference 
points
¤ Permutation index [NBN16, etc]
¤ dist(u, v) is small è d(perm(u), perm(v)) is also small



PP-Index
15

http://www.esuli.it/publications/PP-Index-slides.pdf

q

o2

o1

Order-3 Voronoi Diagram



Intrinsic Dimensionality
16

¨ One of the metrics is Expansion Constant
¤ Smallest c such that |Ball(z, 2R)| ≤ c*|Ball(z, R)|, ∀z

¨ Cover Tree
¤ O(n) space
¤ O(c6 * nlog(n)) construction and update time
¤ O(c12 * nlog(n)) exact NN query time
¤ 𝜀-NN query 

n Δ (aspect ratio): ratio between largest and smallest 
interpoint distance 

cO(1) log�+ (1/✏)O(log c)

<latexit sha1_base64="RXYDUxdiEMelqb5tvDikD76okzc=">AAACn3icfZHbbtNAEIY35lTCKS2X3CxElRKIUhtVotxVgAQ30CCRNqgO0XgzdlZd71q764rI8mPwNNzCQ/A2jJMgESoxkuVvZ/8Zzf6TFEo6H4a/WsG16zdu3tq53b5z9979B53dvVNnSitwLIwydpKAQyU1jr30CieFRcgThWfJxevm/uwSrZNGf/LLAqc5ZFqmUoCn1KxzIL5UJ72oX/NYmYzHb1B5eNaL+AGPsXBSGd1vFKtb0a9nnW44DFfBr0K0gS7bxGi225rEcyPKHLUXCpw7j8LCTyuwXgqFdTsuHRYgLiDDc0INObpptXpZzfcpM+epsfRpz1fZvysqyF0OfjGgf6NwDfhFPkjymm+39unRtJK6KD1qse6clop7wxtf+FxaFF4tCUBYScNxsQALwpN7W50cAdJxMMeUXL+kMmNpZAS3XB+o+z5vNgKWg8owsdBuk7X0fovvadyTAi2Q8GkVg81yqWvyI4sHDf1PCF//CInatIvoX+evwunzYXQ4fPnxsHv8arOVHfaIPWE9FrEX7Ji9YyM2ZoJ9Y9/ZD/YzeBy8DT4Eo7U0aG1qHrKtCD7/BpBizlc=</latexit>



Cover Tree
17

¨ A node covered 
by a pivot data 
point (red) with 
radius R



Cover Tree
18

¨ Cover the points 
using a child pivot 
with radius R/2



Cover Tree
19

¨ Repeat by picking 
the child pivot 
outside the 
previous covers



Cover Tree
20

¨ Nesting
¤ C(i): C(i-1) ∪ black nodes 
¤ C(i-1): colored nodes

¨ Covering
¤ dist(u(i), v(i-1)) ≤ 2i

¨ Separation
¤ dist(u(i-1), v(i-1)) ≥ 2i

fan-out of any node ≤ c4



Encoding-based
21

¨ Learning to hash
¨ Product Quantization
¨ Hierarchical k-means



Learning to Hash
22

¨ Idea:
¤ Embed Rd to a k-dimensional Hamming cube while 

minimizing some objective function (neighborhood 
preservation or distance distortion)
n xi ∈ Rd è zi ∈ {0, 1}k

¨ E.g., Spectral hashing:
¤ Minimize ∑ij Wij ǁzi - zjǁ

n and other conditions (max utilization of bits + 
uncorrelatedness)

¤ Where Wij = exp(-ǁxi - xjǁ2 / 𝜀2)

¨ Many other variants

Minimize avg Hamming distance 
between neighboring points

c.f., https://learning2hash.github.io and https://cs.nju.edu.cn/lwj/L2H.html

è Partition the space into 2k regions



Coding based on k-means
23

¨ Partition the whole space 
into n regions by n-
means è Voronoi 

¨ Can be relaxed using k 
< n
¤ However, still cannot 

afford a very large k 
(why?)



Solution 1: PQ (Product Quantization)
24

¨ Index:
¤ Partition the d dims into L partitions
¤ k-means clustering within each partition 
¤ {C1,j} X {C2,j} X … {CL,j} joint centers
¤ Each point encoded as the closest joint center

¨ Query Processing:
¤ Repeat

n Find the closest joint center  
n Compute the asymmetric distance (via table lookup)

¤ Optimizations: 
n Multi-index-based (best with only 2 partitions)
n PQ Fast Scan [AKS15], PQBF [LCC17], …

Product

Quantization

Tiny space consumption: ~1/32 size of the data

if k = 28



Illustration of PQ
25

10 Clusters 
in Dims {1, 2}

10 Clusters 
in Dims {3, 4}

one of the 100 joint 
Clusters in the 4-dim space

q

o

dis(q, o)



Comparisons
26

VA-File PQ

#Partitions on 
dimensions

d L = d/log(k)

Codebook typically linear, equi-
width partitioning of 
the domain

non-linear, “equi-
width” partitioning of 
the domain

Query 
Processing

Brute-force on the 
encoded data

Best-first search on the 
encoded data



Solution 2: Hierarchical k-Means Tree
27

¨ PQ can be deemed as an approximate version of 
(L*k)-means quantization

¨ Hierarchical k-Means Tree (as in FLANN) recursively 
partition the data using k-means clustering using a 
small k
¤ Special case: hierarchical 2-means trees



28


