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Outline
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¨ Introduction
¨ Exact Query Processing
¨ Approximate Query Processing
¨ Selectivity Estimation
¨ Open Problems



Exact Query Processing
3

¨ Problem definition
¤ Range-similarity query

n Given: 
n a database X of high-dimensional vectors, 
n a query vector q, 
n a distance function dist(., .), 
n a threshold t.

n Return ALL the objects x in X such that dist(q, x) ≤ t. 
n a.k.a. range-similarity query or t-selection problem

¤ Given: 
n … 
n a number k.

n Return ALL the k objects R in X such that no other 
objects is closer to q than objects in R.

n A.k.a. k nearest neighbor query



Motivation
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¨ EXACT does not pose any uncertainty to the pipelines that 
apply similarity query processing as a component. 

¨ It also simplifies empirical comparison as only speed and 
space consumptions are key evaluation criteria. 

¨ Where is boundary of the exact and approximate query 
processing lies. 



Challenge
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¨The curse of dimensionality
¤The computation of exact NN solution is very 

expensive.
¤Research effort has been attracted to approximate 

NNS. 
n Locality sensitive hashing (LSH)-based methods.

n C2LSH, LSH-tree, SRS.
n Product quantization (PQ)-based methods.

n PQ, OPQ, LOPQ.
n Neighborhood graph-based approaches.

n KGraph, Small world Graph.



Opportunity
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¨ Opportunity: the intrinsic dimensionality of real-life high dimensional 
data is usually much lower. 
¤ It is still feasible to develop efficient and practical exact NNS method.
¤ Tree index-based method.

n KD-tree, iDistance, Cover Tree.
¤ Following the “filter and verify” paradigm.

n PartEnum, HmSerach, MiH, GPH, Pigeonring.



Outline
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¨ Partitioning Methods. (Divide and conquer)
¤ These methods partition the original space and bound the overall distance 

using the distance in each subspace. 

¨ Dimensionality Reduction Methods
¤ These methods project objects to another space to reduce dimensionality.

¨ Tree based methods (next part)
¤ These methods partition the database in a hierarchical manner.



Partition based – Solve τ-selection Problem (Range 
Similarity Query)

Challenges:
• When D is large, straightforward searching is costly.
• D and f may be complex, and hard to be indexed directly.

General Solution:

t𝑆 𝐷, 𝑄, 𝜏 =
𝑉𝑒𝑟𝑖𝑓𝑦(𝑡𝑆 𝐷("), 𝑄("), 𝜏" , 𝑡𝑆 𝐷($), 𝑄($), 𝜏$ , … )

Divide and conquer

Step 1: Decompose f into several parts, such that f1(x1, q1) + f2(x2, q2) + … + fm(xm, qm) ≤ τ

Step 2: Perform candidate generation, such that CAND = Q1(D1, q1, f1, τ1) ∪Q2(D2, q2, f2, τ2) ∪
… ∪Qm(Dm, qm, fm, τm).

Step 3: Verify x in CAND, such that f(x, q) ≤ τ
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𝐻𝑆 𝐷,𝑄, 𝜏 = 𝑉𝑒𝑟𝑖𝑓𝑦(𝐻𝑆 D(#), 𝑄(#), 𝜏# , 𝐻𝑆 D(%), 𝑄(%), 𝜏% , … )

Multi-Index Search (PartEnum VLDB2004, HmSearch SSDBM2012，

MIH CVPR2012….）

¨ Reduction via pigeonhole principle
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𝐷𝐵($) 𝐷𝐵(%)

𝑄($) 𝑄(%)

Number of partitions: 
𝑚 = 3

τ1 =1 τ2 =1 τ3 =1

𝜏! = 𝜏" = 𝜏# = ⌊
𝜏
𝑚⌋



Naïve Pigeonhole Principle (ICDE12, SSDBM13, CVPR 2012)

¨ Tightness of divided-thresholds

Same set of 
candidates
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𝝉𝟏 𝝉𝟐 𝝉𝟑
𝜏 = 5 1 1 1
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𝜏 = 3 1 1 1
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𝜏
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Naïve Pigeonhole Principle (CVPR 2012)

¨ Vulnerable to data skewness
¤ Data skewness is quite common

¨ Most solutions to data 
skewness
¤ Do nothing, or
¤ Shuffle the columns, and then 

sequential partitioning. Hopefully 
each partition is less likely to be 
extremely skewed [SSDBM13, CVPR12]

1 1 1Q: 0 1 0 0 0 0 1

τ1 =1 τ2 =1 τ3 =1

• All records in 1st partition are 
candidates è

• Verification for the entire DB, 
irrespective of  other partitions
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¨ General Pigeonhole Principle 
¤ Allocate different thresholds to 

partitions
¤ As long as the thresholds sum up 

to 𝜏 −𝑚+ 1
¤ Can be shown to be the tight

¨ 𝜏$ ∈ {−1, 0, 1, … , 𝜏}
¤ “-1” to allow discarding the 

partition
¤ Correct and is the key to handle 

extreme skewness

Achieve Tight Threshold Allocations 
General Pigeonhole Principle (GPH ICDE 2018)

τ =3

MIH thresholds:

τ1 =
τ
m
⎢

⎣
⎢

⎥

⎦
⎥ =1 τ2 =

τ
m
⎢

⎣
⎢

⎥

⎦
⎥ =1 τ3 =

τ
m
⎢

⎣
⎢

⎥

⎦
⎥ =1

GPH thresholds:

12

𝜏" = 0 𝜏$ = 0 𝜏% = 1

𝜏" = −1 𝜏$ = 1 𝜏% = 1

𝜏" = −1 𝜏$ = 0 𝜏% = 2



Adaptive Threshold Allocation (ICDE 2018)

¨ Which threshold allocation 
is the best?
¤ Cost function: 

n Total number of candidates from 
the partitions

n It upper bounds the query cost (up 
to some constant)

¨ Assumption: 

¤ Use histogram, or 
¤ Use Machine Learning models
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𝐶𝑁 𝑄' , 𝑢 ≜ |𝐻𝑆 𝐷𝐵('), 𝑄('), 𝑢 |
can be estimated ∀𝑖, 𝑢 Minimize 𝐶𝑁 𝑄 ! ,𝑢! +

𝐶𝑁 𝑄", 𝑢" + 𝐶𝑁 𝑄 # , 𝑢#



Encourage Skewness (GPH ICDE 2018)

¨ Let’s make partitions more skewed !!
¤ Initial dimension partitioning

nGreedy algorithm to minimize the total entropy of partitions
¤Refinement by local rearrangement  

nMove one dimension to another partition if it reduces the 
query cost
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Dynamic Dimension Reduction
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Origianl Data Partition

Random Shuffle Dimentions

Skewnized Data Partition

Query Q1,  Allocate 1, 0 -1

Query Q2,  Allocate 0, 1, -1

Query Q3,  Allocate -1, -1, 2



GPH Experiments - Running Time /2

• PubChem dataset
• highly skewness è existing methods lose their pruning power quickly
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¨ OR: original dataset
¨ DD, OS, RS: existing methods that avoid skewness
¨ GR: Skewnization

GPH Experiments - Dimension Partitioning (PubChem)
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Pigeonhole Principle (Multiple Boxes)

Basic Idea: Bound Multiple Boxes?

Problems:  Exponential number of pigeonhole combinations. 
• 20 combined 2 pigeonholes.  
• 60 combined 3 pigeonholes. 
• …

≤ 𝛕 ? 
≤ 1 ? ✘ ≤ 1 ? ✓ ≤ 1 ? ✘ ≤ 1 ? ✓ ≤ 1 ? ✘

18



Pigeonring Principle: Basic form (VLDB19)

Define an order: Boxes are placed in a ring.
For every l in [1 .. m], there exist l consecutive boxes which
contain a total of no more than l·𝛕/m pigeons.

≤ 5 ? 

≤ 1 ? ✘
≤ 1 ?
✓

≤ 1 ? ✘≤ 1 ? ✓

≤ 1 ? ✘ l =1

Dose m pigeonholes contain no more than 𝛕 pigeons? 

• Consider the adjacent
partitions

• When l = 1, it is the same
as General Pigeonhole
Principle.
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Pigeonring Principle: Basic form. (VLDB19)

Define an order: Boxes are placed in a ring.
For every l in [1 .. m], there exist l consecutive boxes which
contain a total of no more than l·𝛕/m pigeons.

≤ 5 ? 

≤ 2 ? ✘ l =2

Dose m pigeonholes contain no more than 𝛕 pigeons? 

• Consider the adjacent
partitions

• When l = 2, it is tighter
than General Pigeonhole
Principle.

• The record can be filtered!

≤ 2 ? ✘

≤ 2 ? ✘
≤ 2 ? ✘

≤ 2 ? ✘
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Pigeonring Principle: Strong form (VLDB19)

≤ 5 ? 

≤ 2 ? ✘ l =2

Dose m pigeonholes contain no more than 𝛕 pigeons? 

• Consider the adjacent
partitions

• When l = 2, it is tighter
than General Pigeonhole
Principle.

• The record can be filtered!

≤ 2 ? ✘

≤ 2 ? ✘
≤ 2 ? ✘

≤ 2 ? ✘

Add a direction, i.e., going clockwise.

There exists a pigeonhole such that for every l in [1 .. m], starting from this pigeonhole and
going clockwise, the l consecutive pigeonholes contain a total of no more than l · t/m pigeons.

21

≤ 2 ? ✓



Combine with GPH Threshold Allocation (VLDB19)

≤ 1?
≤ 1 ?

≤ 1 ?

≤ 1 ?
≤ 1 ?

Not every pigeonhole is equal. Non-uniform distribution. i.e. Prefix Filtering

• Weak threshold allocation: every pigeonhole has equal 𝛕/m partial threshold.
• GPH threshold allocation: We use an allocation vector T = [𝛕0, 𝛕1, … , 𝛕m-1].

• Requires: ||T||1 ≥ 𝛕 – m + 1

Dose m pigeonholes contain no more than 𝛕 pigeons? 

≤ 5 ? 

l =2
• Allocate 2 pigeons for
the two holes

• Due to the non-uniform
distribution of pigeons,
even allocation is not
good.
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Combine with GPH Threshold Allocation

≤ 1?
≤ 0 ?

≤ -1 ?

≤ 1 ?
≤ 0 ?

Not every pigeonhole is equal. Non-uniform distribution. i.e. Prefix Filtering

• Weak threshold allocation: every pigeonhole has equal 𝛕/m partial threshold.
• GPH threshold allocation: We use an allocation vector T = [𝛕0, 𝛕1, … , 𝛕m-1].

• Requires: ||T||1 ≥ 𝛕 – m + 1

Dose m pigeonholes contain no more than 𝛕 pigeons? 

≤ 5 ? 

l =2
Pigeonring Principle +
GPH threshold allocation

CN(q1 ,τ1)+CN(q2 ,τ2)+CN(q3 ,τ3)

OPT[i ,t ]= min
e=−1

t+i−1
	OPT[i−1,t −e]+CN(qi ,e)				if	i >1

CN(qi ,t)																																														if	i =1

⎧
⎨
⎪

⎩⎪

Minimiz
e
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Effect of Chain Length on Hamming Distance Search 

Pigeonring – Experiment Study
24



Other Dimension Reduction Based methods
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• Space Filling Curve
• Not work for high

• Metric Space index (Pivot selection)

Neighboring corners are better than opposite corners!



Embedding Method with Guarantee (DASFAA 2018)
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¨ An efficient distance lower bound
¤ use the combination of linear and non-linear embedding.

¨ Dimensionality reduction
¤ each point in a high dimensional space is embedded into a low 

dimensional space .
¨ Following “filter-and-verify” paradigm

¤ develop an efficient exact NNS algorithm by pruning candidates using 
the new lower bounding, 

¤ hence reducing the cost of expensive distance computation in original 
space. 

22/05/2018DASFAA 2018



Summary of the Exact Techniques

Index Disk-based / In-memory Efficient query type Dimensionality Comments

R-tree Disk-based Point, window, kNN Low Disadvantage is overlap

K-d-tree In-memory Point, window, kNN(?) Low Inefficient for skewed data

Quad-tree In-memory Point, window, kNN(?) Low Inefficient for skewed data

Z-curve + B+-tree Disk-based Point, window Low Order of the Z-curve affects 
performance

iDistance Disk-based Point, kNN High Not good for uniform data in 
very high-D

VA-File Disk-based Point, window, kNN High Not good for skewed data

GPH Memory-based Range, KNN High Good for Skewed data

Pigeonring Memory-based Range High Good for Skewed data

LNL Disk-based KNN High Good for Skewed data



Thank
You!
Q & A


