KDD 2021 Tutorial

High-Dimensional Similarity Query Processing for Data Science

Jianbin Qin
Shenzhen Institute of Computing
Sciences
Shenzhen University
Wei Wang Chuan Xiao
Hong Kong University of Osaka University and Science and Technology
Ying Zhang University of Technology Sydney
Yaoshu Wang
Shenzhen Institute of Computing
Sciences
Shenzhen University

Outline

\square Introduction
\square Exact Query Processing
\square Approximate Query Processing
\square Selectivity Estimation
\square Open Problems

Exact Query Processing

\square Problem definition

\square Range-similarity query

- Given:
- a database X of high-dimensional vectors,
- a query vector q,
- a distance function dist(., .),
- a threshold t.
- Return ALL the objects \mathbf{x} in X such that $\operatorname{dist}(\mathbf{q}, \mathbf{x}) \leq t$.
- a.k.a. range-similarity query or t -selection problem
\square Given:

- a number \boldsymbol{k}.
- Return ALL the \mathbf{k} objects R in X such that no other objects is closer to q than objects in R.
- A.k.a. k nearest neighbor query

Motivation

\square EXACT does not pose any uncertainty to the pipelines that apply similarity query processing as a component.
\square It also simplifies empirical comparison as only speed and space consumptions are key evaluation criteria.
\square Where is boundary of the exact and approximate query processing lies.

Challenge

\square The curse of dimensionality
\square The computation of exact NN solution is very expensive.
\square Research effort has been attracted to approximate NNS.

- Locality sensitive hashing (LSH)-based methods.
- C2LSH, LSH-tree, SRS.
- Product quantization (PQ)-based methods.
$-P Q, O P Q, L O P Q$.
- Neighborhood graph-based approaches.

■KGraph, Small world Graph.

Opportunity

\square Opportunity: the intrinsic dimensionality of real-life high dimensional data is usually much lower.
\square It is still feasible to develop efficient and practical exact NNS method.
\square Tree index-based method.
■ KD-tree, iDistance, Cover Tree.

- Following the "filter and verify" paradigm.
- PartEnum, HmSerach, MiH, GPH, Pigeonring.

Outline

\square Partitioning Methods. (Divide and conquer)
\square These methods partition the original space and bound the overall distance using the distance in each subspace.
\square Dimensionality Reduction Methods
\square These methods project objects to another space to reduce dimensionality.
\square Tree based methods (next part)
\square These methods partition the database in a hierarchical manner.

Partition based - Solve т-selection Problem (Range Similarity Query)

Challenges:

- When D is large, straightforward searching is costly.
- D and f may be complex, and hard to be indexed directly.

General Solution: Divide and conquer
 $\dagger S(D, Q, \tau)=$

$$
\operatorname{Verify}\left(t S\left(D_{(1)}, Q_{(1)}, \tau_{1}\right), t S\left(D_{(2)}, Q_{(2)}, \tau_{2}\right), \ldots\right)
$$

Step 1: Decompose f into several parts, such that $f_{1}\left(x_{1}, q_{1}\right)+f_{2}\left(x_{2}, q_{2}\right)+\ldots+f_{m}\left(x_{m}, q_{m}\right) \leq \tau$

Step 2: Perform candidate generation, such that CAND $=Q_{1}\left(D_{1}, q_{1}, f_{1}, \tau_{1}\right) \cup Q_{2}\left(D_{2}, q_{2}, f_{2}, \tau_{2}\right) \cup$ $\ldots \cup Q_{m}\left(D_{m}, q_{m}, f_{m}, \tau_{m}\right)$.

Step 3: Verify x in CAND, such that $f(x, q) \leq \tau$ MIH CVPR2012....)
\square Reduction via pigeonhole principle
Number of partitions:

$$
H S(D, Q, \tau)=\operatorname{Verify}\left(H S\left(\mathrm{D}_{(1)}, Q_{(1)}, \tau_{1}\right), H S\left(\mathrm{D}_{(2)}, Q_{(2)}, \tau_{2}\right), \ldots\right)
$$

$$
m=3
$$

$$
\tau_{1}=\tau_{2}=\tau_{3}=\left\lfloor\frac{\tau}{m}\right\rfloor
$$

Naïve Pigeonhole Principle (ICDE12, SsDbm13, CVPR 2012)

\square Tightness of divided-thresholds

$$
\tau_{1}=\tau_{2}=\tau_{3}=\left\lfloor\frac{\tau}{m}\right\rfloor
$$

	τ_{1}	τ_{2}	τ_{3}
$\tau=5$	1	1	1
$\tau=4$	1	1	1
$\tau=3$	1	1	1

Same set of candidates

Naïve Pigeonhole Principle (CVPR 2012)

\square Vulnerable to data skewness
\square Data skewness is quite common
\square Most solutions to data skewness
\square Do nothing, or
\square Shuffle the columns, and then sequential partitioning. Hopefully

$$
\tau_{3}=1
$$ each partition is less likely to be extremely skewed [SSDBM13, CVPR12]

	1	1	0	0	1	0	0	0	0	1
	1	1	1	0	1	1	0	0	0	0
DB:	1	1	1	1	1	0	0	1	1	0
	1	1	1	1	0	0	1	1	1	0
	1	1	1	1	1	0	1	1	1	0

Q:

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{array}
$$

$\tau_{1}=1$

$$
\tau_{2}=1
$$

- All records in $1^{\text {st }}$ partition are candidates \rightarrow
- Verification for the entire DB, irrespective of other partitions

Achieve Tight Threshold Allocations General Pigeonhole Principle (GPH ICDE 2018)

\square General Pigeonhole Principle

- Allocate different thresholds to partitions
\square As long as the thresholds sum up to $\tau-m+1$
- Can be shown to be the tight
$\square \tau_{i} \in\{-1,0,1, \ldots, \tau\}$
- "-1" to allow discarding the partition
\square Correct and is the key to handle extreme skewness

$$
\tau=3
$$

MIH thresholds:
$\tau_{1}=\left\lfloor\frac{\tau}{m}\right\rfloor=1 \quad \tau_{2}=\left\lfloor\frac{\tau}{m}\right\rfloor=1 \quad \tau_{3}=\left\lfloor\frac{\tau}{m}\right\rfloor=1$
GPH thresholds:

$$
\begin{array}{lll}
\tau_{1}=0 & \tau_{2}=0 & \tau_{3}=1 \\
\tau_{1}=-1 & \tau_{2}=0 & \tau_{3}=2 \\
\tau_{1}=-1 & \tau_{2}=1 & \tau_{3}=1
\end{array}
$$

Adaptive Threshold Allocation (ICDE 2018)

\square Which threshold allocation is the best?
\square Cost function:

- Total number of candidates from the partitions
- It upper bounds the query cost (up to some constant)
\square Assumption:
$C N\left(Q_{i}, u\right) \triangleq\left|H S\left(D B_{(i)}, Q_{(i)}, u\right)\right|$ can be estimated $\forall i, u$
\square Use histogram, or

	1	1	0	0	1	0	0	0	0	1
DB.	1	1	1	0	1	1	0	0	0	0
	1	1	1	1	1	0	0	1	1	0
	1	1	1	1	0	0	1	1	1	0
	1	1	1	1	1	0	1	1	1	0
	$<q_{1}, \tau_{1}>$			$<q_{2}, \tau_{2}>$			$\left\langle q_{3}, \tau_{3}>\right.$			

Q:	1	1	1	0	1	0	0	0	0	1
$\tau=3$	$d=10$									
			$\begin{aligned} & \operatorname{mize} \\ & Q_{2}, \end{aligned}$							

Encourage Skewness (GPH ICDE 2018)

\square Let's make partitions more skewed !!
\square Initial dimension partitioning

- Greedy algorithm to minimize the total entropy of partitions
\square Refinement by local rearrangement
$■$ Move one dimension to another partition if it reduces the query cost

Dynamic Dimension Reduction

Origianl Data Partition

Random Shuffle Dimentions

Skewnized Data Partition

Query Q3,

GPH Experiments - Running Time /2

- PubChem dataset
- highly skewness \rightarrow existing methods lose their pruning power quickly

GPH Experiments - Dimension Partitioning (PubChem)

\square OR: original dataset
\square DD, OS, RS: existing methods that avoid skewness
GR: Skewnization

Pigeonhole Principle (Multiple Boxes)

Basic Idea: Bound Multiple Boxes?
Problems: Exponential number of pigeonhole combinations.

- 20 combined 2 pigeonholes.
- 60 combined 3 pigeonholes.
- ...

Pigeonring Principle: Basic form (VLDB19)

Dose m pigeonholes contain no more than τ pigeons?

- Consider the adjacent partitions
- When $I=1$, it is the same as General Pigeonhole Principle.

Define an order: Boxes are placed in a ring.
For every I in [1 .. m], there exist I consecutive boxes which contain a total of no more than $1 \cdot \tau / \mathbf{m}$ pigeons.

Pigeonring Principle: Basic form. (VLDB19)

Define an order: Boxes are placed in a ring. For every I in [1 .. m], there exist I consecutive boxes which contain a total of no more than $1 \cdot \tau / \mathbf{m}$ pigeons.

- Consider the adjacent partitions
- When $I=2$, it is tighter than General Pigeonhole Principle.
- The record can be filtered!

Pigeonring Principle: Strong form (VLDB19)

Dose m pigeonholes contain no more than τ pigeons?

- Consider the adjacent partitions
- When $I=2$, it is tighter than General Pigeonhole Principle.
- The record can be filtered!

Add a direction, i.e., going clockwise.
There exists a pigeonhole such that for every lin [1 .. m], starting from this pigeonhole and going clockwise, the I consecutive pigeonholes contain a total of no more than $I \cdot t / m$ pigeons.

Combine with GPH Threshold Allocation (VLDB19)

Dose m pigeonholes contain no more than τ pigeons?

Not every pigeonhole is equal. Non-uniform distribution. i.e. Prefix Filtering

- Weak threshold allocation: every pigeonhole has equal $\mathbf{\tau} / \mathrm{m}$ partial threshold.
- GPH threshold allocation: We use an allocation vector $T=\left[\boldsymbol{\tau}_{0}, \boldsymbol{\tau}_{1}, \ldots, \boldsymbol{\tau}_{\mathrm{m}-1}\right]$.
- Requires: $\left||T| \|_{1} \geq \boldsymbol{\tau}-\mathrm{m}+1\right.$

Combine with GPH Threshold Allocation

Dose m pigeonholes contain no more than τ pigeons?

Not every pigeonhole is equal. Non-uniform distribution. i.e. Prefix Filtering

- Weak threshold allocation: every pigeonhole has equal $\boldsymbol{\tau} / \mathrm{m}$ partial threshold.
- GPH threshold allocation: We use an allocation vector $\mathrm{T}=\left[\boldsymbol{\tau}_{0}, \boldsymbol{\tau}_{1}, \ldots, \boldsymbol{\tau}_{\mathrm{m}-1}\right]$.
- Requires: $\left||T| \|_{1} \geq \boldsymbol{\tau}-\mathrm{m}+1\right.$

Pigeonring - Experiment Study

(b) GIST, Time
(a) GIST, Candidate

Effect of Chain Length on Hamming Distance Search

Other Dimension Reduction Based methods

- Space Filling Curve
- Not work for high

- Metric Space index (Pivot selection)

Neighboring corners are better than opposite corners!

Embedding Method with Guarantee (DASFAA 2018)

\square An efficient distance lower bound
\square use the combination of linear and non-linear embedding.
\square Dimensionality reduction

- each point in a high dimensional space is embedded into a low dimensional space.
\square Following "filter-and-verify" paradigm
\square develop an efficient exact NNS algorithm by pruning candidates using the new lower bounding,
\square hence reducing the cost of expensive distance computation in original space.

Summary of the Exact Techniques

Index	Disk-based / In-memory	Efficient query type	Dimensionality	Comments
R-tree	Disk-based	Point, window, kNN	Low	Disadvantage is overlap
K-d-tree	In-memory	Point, window, kNN(?)	Low	Inefficient for skewed data
Quad-tree	In-memory	Point, window, kNN(?)	Low	Inefficient for skewed data
Z-curve + B+-tree	Disk-based	Point, window	Low	Order of the Z-curve affects performance
iDistance	Disk-based	Point, kNN	High	Not good for uniform data in very high-D
VA-File	Disk-based	Point, window, kNN	High	Not good for skewed data
GPH	Memory-based	Range, KNN	High	Good for Skewed data
Pigeonring	Memory-based	Range	High	Good for Skewed data
LNL	Disk-based	KNN	High	Good for Skewed data

Thank You!
 Q \& A

