
KDD 2021 Tutorial
High-Dimensional Similarity Query

Processing for Data Science
Jianbin Qin

Shenzhen Institute of Computing
Sciences

Shenzhen University

Wei Wang
Hong Kong University of
Science and Technology

Chuan Xiao
Osaka University and

Nagoya University

Ying Zhang
University of

Technology Sydney

Yaoshu Wang
Shenzhen Institute of Computing

Sciences
Shenzhen University

Outline
2

¨ Introduction
¨ Exact Query Processing
¨ Approximate Query Processing
¨ Selectivity Estimation
¨ Open Problems

Exact Query Processing
3

¨ Problem definition
¤ Range-similarity query

n Given:
n a database X of high-dimensional vectors,
n a query vector q,
n a distance function dist(., .),
n a threshold t.

n Return ALL the objects x in X such that dist(q, x) ≤ t.
n a.k.a. range-similarity query or t-selection problem

¤ Given:
n …
n a number k.

n Return ALL the k objects R in X such that no other
objects is closer to q than objects in R.

n A.k.a. k nearest neighbor query

Motivation
4

¨ EXACT does not pose any uncertainty to the pipelines that
apply similarity query processing as a component.

¨ It also simplifies empirical comparison as only speed and
space consumptions are key evaluation criteria.

¨ Where is boundary of the exact and approximate query
processing lies.

Challenge
5

¨The curse of dimensionality
¤The computation of exact NN solution is very

expensive.
¤Research effort has been attracted to approximate

NNS.
n Locality sensitive hashing (LSH)-based methods.

n C2LSH, LSH-tree, SRS.
n Product quantization (PQ)-based methods.

n PQ, OPQ, LOPQ.
n Neighborhood graph-based approaches.

n KGraph, Small world Graph.

Opportunity
6

¨ Opportunity: the intrinsic dimensionality of real-life high dimensional
data is usually much lower.
¤ It is still feasible to develop efficient and practical exact NNS method.
¤ Tree index-based method.

n KD-tree, iDistance, Cover Tree.
¤ Following the “filter and verify” paradigm.

n PartEnum, HmSerach, MiH, GPH, Pigeonring.

Outline
7

¨ Partitioning Methods. (Divide and conquer)
¤ These methods partition the original space and bound the overall distance

using the distance in each subspace.

¨ Dimensionality Reduction Methods
¤ These methods project objects to another space to reduce dimensionality.

¨ Tree based methods (next part)
¤ These methods partition the database in a hierarchical manner.

Partition based – Solve τ-selection Problem (Range
Similarity Query)

Challenges:
• When D is large, straightforward searching is costly.
• D and f may be complex, and hard to be indexed directly.

General Solution:

t𝑆 𝐷, 𝑄, 𝜏 =
𝑉𝑒𝑟𝑖𝑓𝑦(𝑡𝑆 𝐷("), 𝑄("), 𝜏" , 𝑡𝑆 𝐷($), 𝑄($), 𝜏$, …)

Divide and conquer

Step 1: Decompose f into several parts, such that f1(x1, q1) + f2(x2, q2) + … + fm(xm, qm) ≤ τ

Step 2: Perform candidate generation, such that CAND = Q1(D1, q1, f1, τ1) ∪Q2(D2, q2, f2, τ2) ∪
… ∪Qm(Dm, qm, fm, τm).

Step 3: Verify x in CAND, such that f(x, q) ≤ τ

8

DQ()DC R

𝐻𝑆 𝐷,𝑄, 𝜏 = 𝑉𝑒𝑟𝑖𝑓𝑦(𝐻𝑆 D(#), 𝑄(#), 𝜏# , 𝐻𝑆 D(%), 𝑄(%), 𝜏% , …)

Multi-Index Search (PartEnum VLDB2004, HmSearch SSDBM2012，

MIH CVPR2012….）

¨ Reduction via pigeonhole principle

1 1 1

1 1 0

1 1 1

1 1 1

1 1 1

1 1 1

𝐷𝐵(")

𝑄(")

0 1 0 0 0 0 1

0 1 0

0 1 1

1 1 0

1 0 0

1 1 0

0 0 0 1

0 0 0 0

0 1 1 0

1 1 1 0

1 1 1 0

9

𝐷𝐵($) 𝐷𝐵(%)

𝑄($) 𝑄(%)

Number of partitions:
𝑚 = 3

τ1 =1 τ2 =1 τ3 =1

𝜏! = 𝜏" = 𝜏# = ⌊
𝜏
𝑚⌋

Naïve Pigeonhole Principle (ICDE12, SSDBM13, CVPR 2012)

¨ Tightness of divided-thresholds

Same set of
candidates

10

𝝉𝟏 𝝉𝟐 𝝉𝟑
𝜏 = 5 1 1 1

𝜏 = 4 1 1 1
𝜏 = 3 1 1 1

𝜏! = 𝜏" = 𝜏# = ⌊
𝜏
𝑚⌋

Naïve Pigeonhole Principle (CVPR 2012)

¨ Vulnerable to data skewness
¤ Data skewness is quite common

¨ Most solutions to data
skewness
¤ Do nothing, or
¤ Shuffle the columns, and then

sequential partitioning. Hopefully
each partition is less likely to be
extremely skewed [SSDBM13, CVPR12]

1 1 1Q: 0 1 0 0 0 0 1

τ1 =1 τ2 =1 τ3 =1

• All records in 1st partition are
candidates è

• Verification for the entire DB,
irrespective of other partitions

1 1 0

1 1 1

1 1 1

1 1 1

1 1 1

DB:

0 1 0

0 1 1

1 1 0

1 0 0

1 1 0

0 0 0 1

0 0 0 0

0 1 1 0

1 1 1 0

1 1 1 0

11

¨ General Pigeonhole Principle
¤ Allocate different thresholds to

partitions
¤ As long as the thresholds sum up

to 𝜏 −𝑚+ 1
¤ Can be shown to be the tight

¨ 𝜏$ ∈ {−1, 0, 1, … , 𝜏}
¤ “-1” to allow discarding the

partition
¤ Correct and is the key to handle

extreme skewness

Achieve Tight Threshold Allocations
General Pigeonhole Principle (GPH ICDE 2018)

τ =3

MIH thresholds:

τ1 =
τ
m
⎢

⎣
⎢

⎥

⎦
⎥ =1 τ2 =

τ
m
⎢

⎣
⎢

⎥

⎦
⎥ =1 τ3 =

τ
m
⎢

⎣
⎢

⎥

⎦
⎥ =1

GPH thresholds:

12

𝜏" = 0 𝜏$ = 0 𝜏% = 1

𝜏" = −1 𝜏$ = 1 𝜏% = 1

𝜏" = −1 𝜏$ = 0 𝜏% = 2

Adaptive Threshold Allocation (ICDE 2018)

¨ Which threshold allocation
is the best?
¤ Cost function:

n Total number of candidates from
the partitions

n It upper bounds the query cost (up
to some constant)

¨ Assumption:

¤ Use histogram, or
¤ Use Machine Learning models

1 1 1

1 1 0

1 1 1

1 1 1

1 1 1

1 1 1

DB:

Q:

𝑑 = 10

0 1 0 0 0 0 1

0 1 0

0 1 1

1 1 0

1 0 0

1 1 0

0 0 0 1

0 0 0 0

0 1 1 0

1 1 1 0

1 1 1 0

τ =3

<q1 ,τ1 > <q2 ,τ2 > <q3 ,τ3 >

13

𝐶𝑁 𝑄' , 𝑢 ≜ |𝐻𝑆 𝐷𝐵('), 𝑄('), 𝑢 |
can be estimated ∀𝑖, 𝑢 Minimize 𝐶𝑁 𝑄 ! ,𝑢! +

𝐶𝑁 𝑄", 𝑢" + 𝐶𝑁 𝑄 # , 𝑢#

Encourage Skewness (GPH ICDE 2018)

¨ Let’s make partitions more skewed !!
¤ Initial dimension partitioning

nGreedy algorithm to minimize the total entropy of partitions
¤Refinement by local rearrangement

nMove one dimension to another partition if it reduces the
query cost

14

Dynamic Dimension Reduction
15

Origianl Data Partition

Random Shuffle Dimentions

Skewnized Data Partition

Query Q1, Allocate 1, 0 -1

Query Q2, Allocate 0, 1, -1

Query Q3, Allocate -1, -1, 2

GPH Experiments - Running Time /2

• PubChem dataset
• highly skewness è existing methods lose their pruning power quickly

 1

 10

 100

 4 8 12 16 20 24 28 32

A
v

g
.

Q
u

er
y

 T
im

e
(m

s)

Threshold

GPH
MIH

HmSearch

PartAlloc
LSH

16

¨ OR: original dataset
¨ DD, OS, RS: existing methods that avoid skewness
¨ GR: Skewnization

GPH Experiments - Dimension Partitioning (PubChem)

 1

 10

 100

 4 8 12 16 20 24 28 32

A
v

g
.

Q
u

er
y

 T
im

e
(m

s)

Threshold

GR
OR

OS
DD

RS

17

Pigeonhole Principle (Multiple Boxes)

Basic Idea: Bound Multiple Boxes?

Problems: Exponential number of pigeonhole combinations.
• 20 combined 2 pigeonholes.
• 60 combined 3 pigeonholes.
• …

≤ 𝛕 ?
≤ 1 ? ✘ ≤ 1 ? ✓ ≤ 1 ? ✘ ≤ 1 ? ✓ ≤ 1 ? ✘

18

Pigeonring Principle: Basic form (VLDB19)

Define an order: Boxes are placed in a ring.
For every l in [1 .. m], there exist l consecutive boxes which
contain a total of no more than l·𝛕/m pigeons.

≤ 5 ?

≤ 1 ? ✘
≤ 1 ?
✓

≤ 1 ? ✘≤ 1 ? ✓

≤ 1 ? ✘ l =1

Dose m pigeonholes contain no more than 𝛕 pigeons?

• Consider the adjacent
partitions

• When l = 1, it is the same
as General Pigeonhole
Principle.

19

Pigeonring Principle: Basic form. (VLDB19)

Define an order: Boxes are placed in a ring.
For every l in [1 .. m], there exist l consecutive boxes which
contain a total of no more than l·𝛕/m pigeons.

≤ 5 ?

≤ 2 ? ✘ l =2

Dose m pigeonholes contain no more than 𝛕 pigeons?

• Consider the adjacent
partitions

• When l = 2, it is tighter
than General Pigeonhole
Principle.

• The record can be filtered!

≤ 2 ? ✘

≤ 2 ? ✘
≤ 2 ? ✘

≤ 2 ? ✘

20

Pigeonring Principle: Strong form (VLDB19)

≤ 5 ?

≤ 2 ? ✘ l =2

Dose m pigeonholes contain no more than 𝛕 pigeons?

• Consider the adjacent
partitions

• When l = 2, it is tighter
than General Pigeonhole
Principle.

• The record can be filtered!

≤ 2 ? ✘

≤ 2 ? ✘
≤ 2 ? ✘

≤ 2 ? ✘

Add a direction, i.e., going clockwise.

There exists a pigeonhole such that for every l in [1 .. m], starting from this pigeonhole and
going clockwise, the l consecutive pigeonholes contain a total of no more than l · t/m pigeons.

21

≤ 2 ? ✓

Combine with GPH Threshold Allocation (VLDB19)

≤ 1?
≤ 1 ?

≤ 1 ?

≤ 1 ?
≤ 1 ?

Not every pigeonhole is equal. Non-uniform distribution. i.e. Prefix Filtering

• Weak threshold allocation: every pigeonhole has equal 𝛕/m partial threshold.
• GPH threshold allocation: We use an allocation vector T = [𝛕0, 𝛕1, … , 𝛕m-1].

• Requires: ||T||1 ≥ 𝛕 – m + 1

Dose m pigeonholes contain no more than 𝛕 pigeons?

≤ 5 ?

l =2
• Allocate 2 pigeons for
the two holes

• Due to the non-uniform
distribution of pigeons,
even allocation is not
good.

22

Combine with GPH Threshold Allocation

≤ 1?
≤ 0 ?

≤ -1 ?

≤ 1 ?
≤ 0 ?

Not every pigeonhole is equal. Non-uniform distribution. i.e. Prefix Filtering

• Weak threshold allocation: every pigeonhole has equal 𝛕/m partial threshold.
• GPH threshold allocation: We use an allocation vector T = [𝛕0, 𝛕1, … , 𝛕m-1].

• Requires: ||T||1 ≥ 𝛕 – m + 1

Dose m pigeonholes contain no more than 𝛕 pigeons?

≤ 5 ?

l =2
Pigeonring Principle +
GPH threshold allocation

CN(q1 ,τ1)+CN(q2 ,τ2)+CN(q3 ,τ3)

OPT[i ,t]= min
e=−1

t+i−1
	OPT[i−1,t −e]+CN(qi ,e)				if	i >1

CN(qi ,t)																																														if	i =1

⎧
⎨
⎪

⎩⎪

Minimiz
e

23

Effect of Chain Length on Hamming Distance Search

Pigeonring – Experiment Study
24

Other Dimension Reduction Based methods
25

• Space Filling Curve
• Not work for high

• Metric Space index (Pivot selection)

Neighboring corners are better than opposite corners!

Embedding Method with Guarantee (DASFAA 2018)
26

¨ An efficient distance lower bound
¤ use the combination of linear and non-linear embedding.

¨ Dimensionality reduction
¤ each point in a high dimensional space is embedded into a low

dimensional space .
¨ Following “filter-and-verify” paradigm

¤ develop an efficient exact NNS algorithm by pruning candidates using
the new lower bounding,

¤ hence reducing the cost of expensive distance computation in original
space.

22/05/2018DASFAA 2018

Summary of the Exact Techniques

Index Disk-based / In-memory Efficient query type Dimensionality Comments

R-tree Disk-based Point, window, kNN Low Disadvantage is overlap

K-d-tree In-memory Point, window, kNN(?) Low Inefficient for skewed data

Quad-tree In-memory Point, window, kNN(?) Low Inefficient for skewed data

Z-curve + B+-tree Disk-based Point, window Low Order of the Z-curve affects
performance

iDistance Disk-based Point, kNN High Not good for uniform data in
very high-D

VA-File Disk-based Point, window, kNN High Not good for skewed data

GPH Memory-based Range, KNN High Good for Skewed data

Pigeonring Memory-based Range High Good for Skewed data

LNL Disk-based KNN High Good for Skewed data

Thank
You!
Q & A

